

Tutkimuksella uudistusta ja erikoistumista: miten kasviproteiineja ja solumaataloutta voisi hyödyntää paremmin

Emilia Nordlund

20/09/2023 VTT – beyond the obvious

VTT builds sustainable future by the means of technology and excellence to:

- Reach a carbon neutral economy in the coming decades
- Achieve a 10-fold productivity leap from resources
- Secure society's functions, fiscal sustainability and wellbeing
- Bring about the quantum leap in computing
- Match nature's engineering skills through synthetic biology and bioinspired production

SYSTEMIC CHALLENGE

Development of Sustainable Food System

04/12/2023 VTT – beyond the obvious

Food & Protein diversification is critical

Terrestial sources

- Plants
- Insects
- Animals

Aquatic sources

- Fish, seafood
- Algae
- Insects
- Aquatic plants

Cellular agriculture

- Microbial biomass
- Precision fermentation
- Cultured meat
- Plant cells

VTT

VTT focus areas for the sustainable food system development

Plant based food

More efficient use of agricultural resources by new plant based food innovations

Cellular agriculture

Production of food ingredients by microbes and other cell cultures

Three integrated platforms for innovation

Plant based food

- Cascading use of raw materials
- Ingredient separation technologies
- Dairy and meat alternatives
- · Hybrid food design

Cellular agriculture

- Precision fermentation
- Whole cell microbial solutions
- Plant cell cultures for foods
- Bioprocesses with sustainable feedstocks

Agile data-driven design & manufacturing

 Predictive tools, monitoring technologies & data analytics for process and product design

VTT

4.12.2023 VTT – beyond the obvious

Innovation in Plant Based Food

4.12.2023 VTT – beyond the obvious

Pyramid of ingredient production – optimizing quality and resource efficacy

Plant based food cases by VTT

New innovation case: Extrusion-based protein separation method

VTT - beyond the obvious

There is a need for cost-efficient environmentally sustainable methods to produce high quality protein ingredients

Current methods:

- Dry fractionation Energy consumption moderate, proteins and other compounds in native state; BUT: Concentration to isolate level is not possible, it is applicable only for selected raw materials
- Wet separation Isolates possible; BUT: High energy consumption (14 MJ/kg protein vs. 2 MJ/kg in dry fractionation), denaturation, use of chemicals, sustainability challenges

04/12/2023

A patented extrusion-based fractionation method to produce high quality plant protein

- By the novel method, it is possible to obtain heterogenous extrusion output consisting of protein and carbohydrate enriched granules
- The process overcomes limitations in current wet and dry fractionation, and is capable of fractionating various raw materials, even those containing lipids

Process and product facts

- Technology successfully tested with cereals and legumes (e.g. pea, oats, faba bean, cowpea, chickpea)
- Cost effective and sustainable process based on conventional extrusion
- Protein concentration with the tested raw materials in the range of 65-80% and protein yield is up to 85% of raw material protein
- Process significantly decreases the beany and intense flavour of the legume raw materials
- Both protein and carbohydrate fractions have functionalities required for high quality food ingredients

New ingredient technologies to boost the Finnish plant protein business / BF-CI-RETHINK

- A public 3-year co-innovation project funded by Business Finland and VTT (to small extent by industry)
- Duration: June 2023 May 2026
- Research project budget: 2M€
- Research partner: VTT (Respons. leader Emilia Nordlund, PM Pia Silventoinen-Veijalainen)
- Industry partners: Anora, Apetit, Fazer, Helsingin Mylly, Raisio, Valio, Viking Malt, 5 companies have their own parallel projects

Novel & innovative ingredient technologies & processing concepts for generation of scalable food business Innovative separation technologies to maximise protein quality and yield

Molecular level understanding to reveal fundamentals on functionality & flavour

Solutions to utilize the whole raw material for food use: value for all streams

New feasible processes and value chains with export potential

Innovation in Cellular Agriculture

VTT – beyond the obvious

Cellular agriculture cases by VTT

Solein FOOD OUT OF THIN AIR.

www.solarfoods.com

<u>Sustainable coffee grown in Finland –</u> <u>VTT News (vttresearch.com)</u>

Case Onego Bio VTT spin-off

Fungus as a host to produce functional egg proteins

https://www.onego.bio/

What's cooking

VTT – beyond the obvious

Microbial lipids make the alternative meat sizzle

- While fat typically comprises a smaller fraction of food products, it is a key determinant of flavor, texture and nutrition
- Unsustainable coconut and palm oil are the main fat sources in many products
- VTT is developing microbial strains having e.g. cocoa butter or beef like fatty acid profile
- Up to 60% lipid yield per biomass can be generated

Computational approach for designing new & better food proteins

- Exploring the translation between DNA sequence and protein function, e.g. foaming of ovalbumin
- Based on the surface charge and other properties, relevant parts of the protein sequence alerted by a machine learning
- The resulting 3D structures checked with AlphaFold to ensure the adequate folding
- Finally, the new ovalbumin sequences were expressed in Aspergillus oryzae

Beyond microbes –

How to build feasible cell factory processes for food production

Critical parts of the value chain for efficacy and safety

Agri & forest based biomass streams in Finland

VTT

Volumetric potential of Finnish agri-food industry side-streams as a carbon source for microbial protein production

Main assumptions for the microbial protein production

- Pretreatment efficiency (sugar yield from side-streams)
 - 100% for liquid streams
 - 90% for solid streams
- Recombinant protein production (precision ferm.)
 - Yield from sugar to protein 0.2 g protein / g sugar
- Microbial biomass (SCP) production
 - Yield from sugar to SCP cells 0.5 g/g sugars
 - SCP protein content 50%

Estimated protein production potential based on agrifood sidestreams

Side-streams together result in 310 000 tons/y precision ferm protein, or 390 000 tons/y SCP protein

è.

Take home message

Innovations emerge from collaboration, and at the interface of the different research and industry fields

beyond the obvious

Emilia Nordlund emilia.Nordlund@vtt.fi +358 40 504 2963 www.vtt.fi